Objavili najvyššiu možnú rýchlosť šírenia zvuku. Je dvakrát vyššia ako sme si mysleli
Vďaka spolupráci Cambridgskej univerzity, univerzity Queen Marry a inštitútu High Pressure Physics v Rusku sme konečne zistili maximálnu rýchlosť šírenia zvuku. Definitívne určiť tento výsledok bola dlhá a náročná úloha najmú preto, lebo merať rýchlosť zvuku v každom existujúcom materiáli nie je jednoduché a vlastne ani možné.
Napriek tomu sa však vedcom podarilo určiť hornú hranicu rýchlosti zvuku a to na základe konštánt a univerzálnych parametrov, podľa ktorých sa riadi vesmír, o téme informoval portál Sciencealert.
Výsledky uvedenej spolupráce a tiež aj pohľad do „zákulisia“ tohto experimentu sú publikované v žurnále Science Advances. V ňom tým vedcov upravuje doposiaľ uvádzané maximum (cca 18 km/s v diamante) na 36 km/s v tuhom atómovom vodíku, informoval web Phys.

Dve bezrozmerné konštanty
Prečo práve v tuhom atómovom vodíku? Zvukové vlny môžu prechádzať rôznymi materiálmi, respektíve médiami rozličnými rýchlosťami, čo je spôsobené tým, že zvuk je v podstate mechanické vlnenie spôsobené kmitaním hmoty, ktorá toto kmitanie odovzdáva hmotným časticiam nachádzajúcim sa v médiu, ktoré ho obklopuje. Z tohto dôvodu vo všeobecnosti platí, že čím je médium pevnejšie, tým rýchlejšie sa v ňom šíri zvuk.
Doteraz však nebolo známe, či zvukové vlny majú aj nejaký horný rýchlostný limit, respektíve či existuje absolútna najvyššia rýchlosť zvuku pri cestovaní pevnými alebo kvapalnými látkami.
Okrem konkrétneho čísla štúdia taktiež uvádza, že rýchlosť zvuku závisí od dvoch základných bezrozmerných konštánt. Presnejšie od konštanty jemnej štruktúry, ktorá charakterizuje silu elektromagnetických interakcií medzi elementárnymi časticami a od pomeru hmotnosti protónu k elektrónu.
Pre zaujímavosť, tieto dve uvedené konštanty zohrávajú dôležitú úlohu v porozumení nášho vesmíru, určujú totiž to ako vznikajú hviezdy a jadrové reakcie, ale zároveň určujú miesta, kde môžu vznikať hviezdy, planéty a dokonca aj molekulárne štruktúry podporujúce život.
Výsledky výskumu
Nový výskum však naznačuje, že tieto dve základné konštanty môžu ovplyvniť aj iné vedecké oblasti, akými sú náuka o materiáloch a fyzika kondenzovaných stavov a to konkrétne stanovením obmedzení pre špecifické vlastnosti materiálov, ako je v tomto prípade rýchlosť zvuku.
„Ukazujeme, že jednoduchá kombinácia konštanty jemnej štruktúry a pomeru hmotnosti protónov k elektrónom vedie k ďalšej bezrozmernej veličine, ktorá má neočakávaný a konkrétny dopad na kľúčovú vlastnosť kondenzovaných stavov – rýchlosť, akou vlny prechádzajú v pevných a kvapalných látkach“ uvádzajú vedci vo svojej publikácii.

Na potvrdenie správnosti svojich výpočtov experimentálne zmerali rýchlosť zvuku na širokej škále materiálov, pričom sa zaoberali jednou konkrétnou predikciou, podľa ktorej sa rýchlosť zvuku znižuje s hmotnosťou atómu. Podľa tejto predikcie by sa teda zvuk mal najrýchlejšie pohybovať v tuhom atómovom vodíku. Vodík je však atómovo tuhá látka iba pri veľmi vysokom tlaku (viac ako 1 milión atmosfér), teda tlaku porovnateľnom s tlakom jadra Jupitera.
Na Zemi sa podarilo podobný tlak dosiahnuť inej skupine vedcov prostredníctvom laserového systému, ktorý simuluje tlak podobný tomu, aký dosahujú vo svojom obale vzácne druhy bielych trpaslíkov.
Pri takto extrémnom tlaku sa vodík stáva unikátnou pevnou kovovou látkou a predpokladá sa, že sa „premení“ na supravodič, ktorý dokáže viesť elektrický prúd bez strát aj pri izbovej teplote.
Keďže dosiahnuť niečo takéto v laboratórnych podmienkach, je neuveriteľné náročné, vedci boli nútení vykonať zložité kvantové mechanické výpočty (namiesto experimentu), z ktorých vyplynulo, že rýchlosť zvuku v atómovom vodíku sa skutočne približuje predpovedanému teoretickému maximu.
Čítajte viac z kategórie: Novinky
Ďakujeme, že čítaš Fontech. V prípade, že máš postreh alebo si našiel v článku chybu, napíš nám na redakcia@fontech.sk.
Teraz čítajú

Ovplyvnila ho okupácia ČSSR, svet dostal nepodarený kompromis. Raketoplán mal vyzerať úplne inak

Sme bližšie, než si myslíme. Slávna vedkyňa prezradila rok, do kedy nájdeme mimozemský život

Blízko Zeme sa môže skrývať „druhá Pandora“. Vedci sú na stope veľkého objavu mimozemského života

Je to zvláštne a nedáva to zmysel. Vedci zistili šokujúcu vec o ročných obdobiach

ZAUJÍMAVÉ Prežila náraz do vody pri 660 km/h. Väčšiu raketu ako Sea Dragon dodnes nikto nepostavil
- 24 hod
- 48 hod
- 7 dní
-
- Sen Netflixu o novej superslužbe sa rozpadá. Miliardár ho nečakaným ťahom zahnal do kúta
- Ukrajina bola varovaním. Susedná krajina chce vlastný HIMARS, vyrobí ho najväčšia zbrojovka sveta
- Sledoval si tieto dva seriály? Máš smolu, práve ich zrušili
- Európska únia opäť zaťala do živého. Chystá návrh, ktorý prinúti časť ľudí kupovať len elektromobily
- Prvý teaser Avengers Doomsday je vonku a fanúšikovia sú v extáze. Zábery potvrdzujú návrat legendárneho hrdinu
-
- Európska únia opäť zaťala do živého. Chystá návrh, ktorý prinúti časť ľudí kupovať len elektromobily
- Ukrajina bola varovaním. Susedná krajina chce vlastný HIMARS, vyrobí ho najväčšia zbrojovka sveta
- USA do dronu posadili AI a prišiel veľký šok. V kľúčovom teste zostrelila lietadlo
- Netflix čakal hit, nestíha sa čudovať. Ľudia ignorujú film, ktorý mal byť magnetom mesiaca
- Rozhodne sa vojna v oceliarňach? Čína zrýchľuje výrobu kľúčového materiálu, USA zatvárajú prevádzky
-
- USA do dronu posadili AI a prišiel veľký šok. V kľúčovom teste zostrelila lietadlo
- Európska únia opäť zaťala do živého. Chystá návrh, ktorý prinúti časť ľudí kupovať len elektromobily
- Ukrajina bola varovaním. Susedná krajina chce vlastný HIMARS, vyrobí ho najväčšia zbrojovka sveta
- Netflix čakal hit, nestíha sa čudovať. Ľudia ignorujú film, ktorý mal byť magnetom mesiaca
- Prežila náraz do vody pri 660 km/h. Väčšiu raketu ako Sea Dragon dodnes nikto nepostavil
